Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Oncogene ; 40(45): 6354-6368, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34588620

RESUMEN

It is unclear how loss-of-function germline mutations in the widely-expressed co-chaperone AIP, result in young-onset growth hormone secreting pituitary tumours. The RET receptor, uniquely co-expressed in somatotrophs with PIT1, induces apoptosis when unliganded, while RET supports cell survival when it is bound to its ligand. We demonstrate that at the plasma membrane, AIP is required to form a complex with monomeric-intracellular-RET, caspase-3 and PKCδ resulting in PIT1/CDKN2A-ARF/p53-apoptosis pathway activation. AIP-deficiency blocks RET/caspase-3/PKCδ activation preventing PIT1 accumulation and apoptosis. The presence or lack of the inhibitory effect on RET-induced apoptosis separated pathogenic AIP variants from non-pathogenic ones. We used virogenomics in neonatal rats to demonstrate the effect of mutant AIP protein on the RET apoptotic pathway in vivo. In adult male rats altered AIP induces elevated IGF-1 and gigantism, with pituitary hyperplasia through blocking the RET-apoptotic pathway. In females, pituitary hyperplasia is induced but IGF-1 rise and gigantism are blunted by puberty. Somatotroph adenomas from pituitary-specific Aip-knockout mice overexpress the RET-ligand GDNF, therefore, upregulating the survival pathway. Somatotroph adenomas from patients with or without AIP mutation abundantly express GDNF, but AIP-mutated tissues have less CDKN2A-ARF expression. Our findings explain the tissue-specific mechanism of AIP-induced somatotrophinomas and provide a previously unknown tumorigenic mechanism, opening treatment avenues for AIP-related tumours.


Asunto(s)
Acromegalia/genética , Mutación de Línea Germinal , Gigantismo/genética , Adenoma Hipofisario Secretor de Hormona del Crecimiento/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Acromegalia/metabolismo , Animales , Animales Recién Nacidos , Apoptosis , Línea Celular , Femenino , Técnicas de Inactivación de Genes , Gigantismo/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Adenoma Hipofisario Secretor de Hormona del Crecimiento/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Especificidad de Órganos , Proteínas Proto-Oncogénicas c-ret/metabolismo , Ratas , Transducción de Señal
3.
Artículo en Inglés | MEDLINE | ID: mdl-33071961

RESUMEN

The RET tyrosine kinase receptor is expressed by the endocrine somatotroph cells of the pituitary where it has important functions regulating survival/apoptosis. However, RET is also expressed by the GPS pituitary stem cells localized in a niche between the adenopituitary and the intermediate lobe. To bind any of its four ligands, RET needs one of four co-receptors called GFRα1-4. It has been previously shown that GFRα1 is expressed by somatotroph cells and acromegaly tumors. GFRα2 was shown to be expressed by pituitary stem cells. GFRα4 was proposed as not expressed in the pituitary. Here we study the RNA and protein expression of the four GFRα co-receptors for RET in rat and human pituitary. The four co-receptors were abundantly expressed at the RNA level both in rat and human pituitary, although GFRα4 was the less abundant. Multiple immunofluorescence for each co-receptor and ß-catenin, a marker of stem cell niche was performed. The four GFRα co-receptors were co-expressed by the GPS cells at the niche colocalizing with ß-catenin. Isolated individual scattered cells positive for one or other receptor could be found through the adenopituitary with low ß-catenin expression. Some of them co-express GFRα1 and PIT1. Immunohistochemistry in normal human pituitary confirmed the data. Our data suggest that the redundancy of GFRα co-expression is a self-supportive mechanism which ensures niche maintenance and proper differentiation.


Asunto(s)
Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Hipófisis/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Células Madre/metabolismo , Animales , Femenino , Humanos , Masculino , Ratas , Nicho de Células Madre
4.
Int J Mol Sci ; 18(1)2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28106826

RESUMEN

Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-related death. Most cases of CRC are detected in Western countries, with its incidence increasing year by year. The probability of suffering from colorectal cancer is about 4%-5% and the risk for developing CRC is associated with personal features or habits such as age, chronic disease history and lifestyle. In this context, the gut microbiota has a relevant role, and dysbiosis situations can induce colonic carcinogenesis through a chronic inflammation mechanism. Some of the bacteria responsible for this multiphase process include Fusobacterium spp, Bacteroides fragilis and enteropathogenic Escherichia coli. CRC is caused by mutations that target oncogenes, tumour suppressor genes and genes related to DNA repair mechanisms. Depending on the origin of the mutation, colorectal carcinomas can be classified as sporadic (70%); inherited (5%) and familial (25%). The pathogenic mechanisms leading to this situation can be included in three types, namely chromosomal instability (CIN), microsatellite instability (MSI) and CpG island methylator phenotype (CIMP). Within these types of CRC, common mutations, chromosomal changes and translocations have been reported to affect important pathways (WNT, MAPK/PI3K, TGF-ß, TP53), and mutations; in particular, genes such as c-MYC, KRAS, BRAF, PIK3CA, PTEN, SMAD2 and SMAD4 can be used as predictive markers for patient outcome. In addition to gene mutations, alterations in ncRNAs, such as lncRNA or miRNA, can also contribute to different steps of the carcinogenesis process and have a predictive value when used as biomarkers. In consequence, different panels of genes and mRNA are being developed to improve prognosis and treatment selection. The choice of first-line treatment in CRC follows a multimodal approach based on tumour-related characteristics and usually comprises surgical resection followed by chemotherapy combined with monoclonal antibodies or proteins against vascular endothelial growth factor (VEGF) and epidermal growth receptor (EGFR). Besides traditional chemotherapy, alternative therapies (such as agarose tumour macrobeads, anti-inflammatory drugs, probiotics, and gold-based drugs) are currently being studied to increase treatment effectiveness and reduce side effects.


Asunto(s)
Neoplasias Colorrectales/patología , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Estadificación de Neoplasias , Factores de Riesgo , Transducción de Señal
5.
Int J Mol Sci ; 15(12): 23501-18, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25526565

RESUMEN

Thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family, acting as a chaperone of endoplasmic reticulum under not fully characterized conditions As a result, TXNDC5 interacts with many cell proteins, contributing to their proper folding and correct formation of disulfide bonds through its thioredoxin domains. Moreover, it can also work as an electron transfer reaction, recovering the functional isoform of other protein disulfide isomerases, replacing reduced glutathione in its role. Finally, it also acts as a cellular adapter, interacting with the N-terminal domain of adiponectin receptor. As can be inferred from all these functions, TXNDC5 plays an important role in cell physiology; therefore, dysregulation of its expression is associated with oxidative stress, cell ageing and a large range of pathologies such as arthritis, cancer, diabetes, neurodegenerative diseases, vitiligo and virus infections. Its implication in all these important diseases has made TXNDC5 a susceptible biomarker or even a potential pharmacological target.


Asunto(s)
Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Animales , Diabetes Mellitus/etiología , Humanos , Hepatopatías/etiología , Neoplasias/etiología , Enfermedades Neurodegenerativas/etiología , Unión Proteica , Proteína Disulfuro Isomerasas/química , Vértigo/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...